Letter to the Editor

Brain Metastases of Lung Cancer: Excessive Toxicity of High Dose VP 16 213

PATRICE VIENS,* JEAN-LÉON LAGRANGE,† ANTOINE THYSS,* PHILIPPE AYELA,* MARC FRENAY‡ and MAURICE SCHNEIDER*

*Hematology-Oncology Department, †Radiotherapy Department and ‡Medical Oncology Department, Centre Antoine-Lacassagne, 36 voie Romaine, 06054 Nice Cedex, France

ADMINISTERED at high doses, etoposide (VP 16 213) diffuses in the cerebrospinal fluid (CSF) and crosses the hematomeningeal barrier [1, 2]. Kleisbauer et al. recently reported a 30% response rate in the treatment of cerebral metastases of lung cancer using high dose VP 16 213 [3]. Utilization of this treatment at our institution had to be stopped, however, owing to a high incidence of severe toxicity.

From September 1984 to September 1987, nine patients with CT-diagnosed brain metastases were entered in our study (Table 1). Mean patient age was 60 years (range 52-70). All patients had histologically confirmed lung tumors: two squamous cell tumors, four adenocarcinomas, three anaplastic small cell tumors. Brain lesions were the first metastatic site in eight patients; six patients had multiple brain metastases, and four patients had metastases both in the brain and in the other organs. One patient had previously received chemotherapy. None of the patients had received irradiation to the brain. Our protocol consisted of six doses of 250 mg/m² VP 16 213 spaced 12 h apart (Table 1). Courses were repeated every 28 days if the platelet count was >100,000/mm³ and the leukocyte count >3000/mm³. Toxicity and responses were evaluated using WHO criteria [4] and CT.

Toxicity was severe and consisted primarily of hematologic manifestations (Table 1). Five patients died in deep aplasia with a major infectious syndrome; three patients developed myelotoxicity and mucitis (grade 4) after the first cycle. Patient No. 6, who had no history of cardiovascular disease, died of heart failure 19 days after the second cycle.

Three of the nine patients were evaluable for response: one partial remission, one stabilization, and one progression (Table 1). Only those patients who responded to the treatment had prolonged survival: 26 and 30 weeks (an anaplastic small cell tumor and an adenocarcinoma).

This series was characterized by both severe toxicity (especially hematologic) and only a 22% response rate (2/9). Boguikouma et al. [5] reported a 30% response rate in a series of 28 patients but also had a high incidence of toxicity (12 deaths). Kleisbauer et al. [3] obtained similar results with identical toxicity (seven deaths in a series of 19 patients). In these last two studies, the median survival was respectively 26 and 24 weeks for responders. However, the overall survival was only 10 weeks for Kleisbauer et al. [3]. In our series, only the two responders benefited from prolonged survival. Eight of our nine patients had not received any chemotherapy or radiotherapy before administration of the VP 16 213; five of them died of hematologic toxicity and three developed grade 4 myelotoxicity.

Utilization of high doses of VM 26 for the treatment of brain metastases of anaplastic small cell

Accepted 8 July 1988.

Address for correspondence and reprint requests: Dr. J.L. Lagrange, Centre Antoine-Lacassagne, 36 voie Romaine, 06054 Nice Cedex, France.

Table 1. Patient characteristics and outcome

Patient No. and sex	Age (years)	PS	Pathology	Previous chemotherapy with VP16/ without VP16	No. cycles with VP16	Response	Toxicity	Survival (weeks)
l M	63	2	Small cell	9/9	1	NE	Lethal	1
2 M	70	3	Squamous	0/0	1	NE	Lethal	i
3 M	60	2	Small cell	0/0	2	NE	Lethal	7
4 M	55	2	Adenocarcinoma	0/0	1	NE	Lethal	1
5 M	52	2	Adenocarcinoma	0/0	l	NE	Lethal	1
6 M	63	2	Squamous	0/0	2	NE	Cardiac grade 4	8
7 M	55	2	Small cell	0/0	4	PR	Myelo. grade 4, mucositis grade 4	26
8 F	61	2	Adenocarcinoma	0/0	6	SD	Myelo. grade 4, mucositis grade 4	30
9 M	54	2	Adenocarcinoma	0/0	1	PD	Myelo. grade 4, mucositis grade 4	4

M: male; F: female; PS: performance status; NE: not evaluable; PR: partial response; SD: stable disease; PD: progressive disease.

cancers gives similar results but with a more acceptable level of toxicity [6]. Compared to the median survival obtained by irradiation of brain metastases (2–10 months) [7], and in view of its hematologic and mucosal toxicity, high dose therapy with VP 16 213 gave an unacceptably high

incidence of adverse effects. Search for other therapeutic combinations must thus be continued.

Acknowledgement—The authors wish to thank Nancy Rameau for translating the manuscript.

REFERENCES

- 1. Postmus PE, Holthuis JJM, Haaxma-Reiche H et al. Penetration of VP16-213 into cerebrospinal fluid after high dose intravenous administration. J Clin Oncol 1984, 2, 215-220.
- 2. Holthuis JJM, Postmus PE, Van Oort WJ et al. Pharmacokinetics of high dose Etoposide (VP16-213). Eur J Cancer Clin Oncol 1986, 20, 1149-1155.
- 3. Kleisbauer JP, Vesco D, Orehek J et al. Treatment of brain metastases of lung cancer with high doses of Etoposide (VP16-213). Cooperative study of the French Pneumocancerology Group. Eur J Cancer Clin Oncol 1988, 24, 131-135.
- 4. WHO Handbook for Reporting Results of Cancer Treatment. WHO Offset Publication No. 48, Geneva, WHO, 1979.
- 5. Boguikouma JB, Guerin JC, Poirier et al. High dose VP16 in the treatment of brain metastases of lung carcinoma. From two consecutive studies to the GFPC. 12th Congress of the European Society for Medical Oncology. Nice, 1986.
- Giaccone G, Donadio M, Bonardi GM et al. Teniposide (VM 26): an effective treatment for the brain metastases of small cell carcinoma of the lung. Eur J Cancer Clin Oncol 1988, 24, 629-631.
- Minna JD, Higgins GA, Glatstein EJ. Cancer of the lung. In: De Vita VT Jr, Hellmans, Rosenberg SA, eds. Cancer: Principles and Practice of Oncology. Philadelphia, JB Lippincott, 1985, 507-597.